Characterization of Context-Free Languages with Polynomially Bounded Ambiguity

نویسنده

  • Klaus Wich
چکیده

We prove that the class of context-free languages with polynomially bounded ambiguity (PCFL) is the closure of the class of unambiguous languages (UCFL) under projections which deletes Parikh bounded symbols only. A symbol a is Parikh bounded in a language L if there is a constant c such that no word of L contains more than c occurrences of a. Furthermore PCFL is closed under the formally stronger operation of Parikh bounded substitution, i.e., a substitution which is the identity for non Parikh bounded symbols. Finally we prove that the closure of UCFL under union and concatenation is a proper subset of

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the unary equivalence of stochastic languages and stochastic context-free languages

We show that every unary stochastic context-free grammar with polynomially bounded ambiguity, has an equivalent probabilistic automaton.

متن کامل

On the Circuit Complexity of Random Generation Problems for Regular and Context-Free Languages

We study the circuit complexity of generating at random a word of length n from a given language under uniform distribution. We prove that, for every language accepted in polynomial time by 1-NAuxPDA of polynomially bounded ambiguity, the problem is solvable by a logspace-uniform family of probabilistic boolean circuits of polynomial size and O(log2 n) depth. Using a suitable notion of reducibi...

متن کامل

Extending Parikh's Theorem to Weighted and Probabilistic Context-Free Grammars

We prove an analog of Parikh’s theorem for weighted context-free grammars over commutative, idempotent semirings, and exhibit a stochastic context-free grammar with behavior that cannot be realized by any stochastic right-linear context-free grammar. Finally, we show that every unary stochastic context-free grammar with polynomially-bounded ambiguity has an equivalent stochastic right-linear co...

متن کامل

Parikh’s Theorem for Weighted and Probabilistic Context-Free Grammars

We prove an analog of Parikh’s theorem for weighted context-free grammars over commutative, idempotent semirings, and exhibit a stochastic context-free grammar with behavior that cannot be realized by any stochastic right-linear context-free grammar. Finally, we show that every unary stochastic context-free grammar with polynomially-bounded ambiguity has an equivalent stochastic right-linear co...

متن کامل

Sublinear Ambiguity

A context-free grammar G is ambiguous if there is a word that can be generated by G with at least two different derivation trees. Ambiguous grammars are often distinguished by their degree of ambiguity, which is the maximal number of derivation trees for the words generated by them. If there is no such upper bound G is said to be ambiguous of infinite degree. By considering how many derivation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001